

Intro to Glauber Model

Modeling the experimental observables to determine centrality.

Manuel Calderón de la Barca Sánchez

Calculate particle multiplicity

Event displays

Nuclear Charge Densities

Charge densities: similar to a hard sphere. Edge is "fuzzy": Woods-Saxon distribution

For the Pb nucleus (used at LHC)

 $\rho(r)$ =

Woods-Saxon density:

- $R = 1.07$ fm $*$ A $^{1/3}$
- $a = 0.54$ fm
- $A = 208$ nucleons

Probability : $\alpha r^2 \rho(r)$

Pb Radial Volume Density

 $\rho_{_0}$

r−*R a*

1+ *e*

Glauber model parameters

• [PbPb at 5.02 TeV](http://dx.doi.org/10.1016/j.softx.2015.05.001)

-
- \bullet σ_{NN}^{inel}

• Nuclear radius 6.62 ± 0.06 fm \bullet Skin depth 0.546 \pm 0.010 fm d_{min} 0.4 \pm 0.4 fm 70 ± 5 mb

http://dx.doi.org/10.1016/j.softx.2015.05.001

Nuclei: A bunch of nucleons

Each nucleon is distributed with: Angular probabilities: \bullet Flat in ϕ , flat in cos(θ). $P(r, \theta, \phi) = \rho(r) dV = \rho(r) r^2 dr d(\cos \theta) d\phi$

Impact parameter distribution

- Like hitting a target:
- Rings have more area
- Area of ring of radius *b*, thickness *db*: 2π*bdb*
- **Area proportional to probability**

7

Collision:

- •2 Nuclei colliding
- Red: nucleons from nucleus A
- Blue: nucleons from nucleus B

M.L.Miller, et al. Annu. Rev. Nucl. Part. Sci. 2007.57:205-243

Monte Carlo Model of nuclear collisions

Nuclear Collisions, Glauber model

Monte Carlo Model of Nuclear Collisions

- 1. Nuclear Density Function
	- Make plots of the nuclear density for the Pb nucleus
- 2. Distribution of nucleons in the nucleus
	- Using the nuclear density function, write a function that will randomly distribute A nucleons in the nucleus (A=208 for Pb).
	- Make a plots of the x-y, and x-z coordinates of the nucleons in sample nucleus.
		- You will need to distribute them in 3D. You can use spherical polar coordinates, then convert to cartesian.

Project: Monte Carlo Model of Nuclear Collisions

- 3. Impact Parameter, b
	- Make a plot of the impact parameter probability distribution \bullet
	- For b = 6 fm, make an example collision between two nuclei. Plot the x-y coordinates of the nucleons in each nucleus.
- 4. Number of collisions, Number of participants
	- For each pair of nucleons (one from nucleus A, one from nucleus B), check if there is a collision.
		- Nucleon-Nucleon Collision:
			- Find the distance d in the x-y plane between each nucleon-nucleon pair (the z axis is the beam axis, see slide 6)
			- Collision: when d²< σ/π . Use σ = 65 mb (where 1 b = 10-²⁸ m²).
		- Any nucleon that collides is called a "participant". Color each ٠ participant a darker color.
		- Count the number of nucleon-nucleon collisions. ٠

Project: Monte Carlo Model of Nuclear Collisions

- 5. Many collisions!
	- Simulate 106 nucleus-nucleus collision events.
	- Draw a random impact parameter from the distribution (P(*b*) proportional to *b*).
	- Calculate Npart, Ncoll for each collision.
	- **For those events where there was an interaction** (Ncoll>=1), fill histograms of
		- the impact parameter, *b*.
		- the number of participants
		- **the number of collisions**
	- In part II of the project, we will model particle production, and compare it against data.

Interaction Probability vs. Impact Parameter, b

• After 10M events

• Beyond *b*~2*R* Nuclei miss each other Note fuzzy edge Largest probability: • Collision at b~12-14 fm • Head on collisions: \bullet b~0: Small probability

Binary Collisions, Number of participants

- If two nucleons get closer than $d^2<\sigma/\pi$ they collide.
- Each colliding nucleon is a "participant" (Dark colors)
- Count number of binary collisions.
- Count number of participants **14**

Cross Section in Nuclear Collisions

2

R

R,

• Nuclear forces are short range

- Range for Yukawa Potential *R*~1/*Mx*
	- Exchanged particles are pions: $R \sim 1/(140 \text{ MeV}) \sim 1.4 \text{ fm}$
- Nuclei interact when their edges are ~ 1 fm apart
- **o** Oth Order: Hard sphere

$$
\sigma_{\text{geom}} = \pi (R_1 + R_2)^2 = \pi r_0^2 (A_1^{1/3} + A_2^{1/3})^2
$$

• $r_0 = 1.2$ fm

- Bradt & Peters formula
	- \bullet *b* decreases with increasing A_{min} $\sigma_{\text{geom}} = \pi r_0^2 \left(A_1^{1/3} + A_2^{1/3} - b \right)$ 2
- J.P. Vary's formula:
	- $\sigma_{\text{geom}} = \pi r_0^2 \left(A_1^{1/3} + A_2^{1/3} b_0 (A_1^{-1/3} + A_2^{-1/3}) \right)$
	- Last term: curvature effects on nuclear surfaces

Find N_{part}, N_{coll}, b distributions

• Nuclear Collisions

Comparing to Experimental data: CMS example

- Each nucleon-nucleon collision produces particles.
	- Particle production: negative binomial distribution.
- Particles can be measured: tracks, energy in a detector.
- CMS: Energy deposited by Hadrons in "Forward" region

Centrality Table in CMS

From CMS MC Glauber model.

CMS: HIN-10-001, \bullet JHEP 08 (2011) 141

