

Intro to Glauber Model

Modeling the experimental observables to determine centrality.

Manuel Calderón de la Barca Sánchez

Calculate particle multiplicity

• Event displays

Nuclear Charge Densities

Charge densities: similar to a hard sphere. Edge is "fuzzy": Woods-Saxon distribution

For the Pb nucleus (used at LHC)

Woods-Saxon density:

- R = 1.07 fm * A ^{1/3}
- a =0.54 fm
- A = 208 nucleons

• Probability : $\propto r^2 \rho(r)$

Pb Radial Volume Density

 $\rho(r) = \frac{\rho_0}{1 + e^{\frac{r-R}{a}}}$

Glauber model parameters

• PbPb at 5.02 TeV

Nuclear radius
Skin depth

• \mathbf{d}_{\min} • σ_{NN}^{inel} $6.62 \pm 0.06 \text{ fm}$ $0.546 \pm 0.010 \text{ fm}$ $0.4 \pm 0.4 \text{ fm}$ $70 \pm 5 \text{ mb}$

http://dx.doi.org/10.1016/j.softx.2015.05.001

Nuclei: A bunch of nucleons

Each nucleon is distributed with: P(r,θ,φ) = ρ(r)dV = ρ(r)r²drd(cosθ)dφ Angular probabilities: Flat in φ, flat in cos(θ).

Impact parameter distribution

- Like hitting a target:
- Rings have more area
- Area of ring of radius b, thickness db: $2\pi bdb$
- Area proportional to probability

Collision:

- 2 Nuclei colliding
- Red: nucleons from nucleus A
- Blue: nucleons from nucleus B

M.L.Miller, et al. Annu. Rev. Nucl. Part. Sci. 2007.57:205-243

Monte Carlo Model of nuclear collisions

• Nuclear Collisions, Glauber model

Monte Carlo Model of Nuclear Collisions

- **1.** Nuclear Density Function
 - Make plots of the nuclear density for the Pb nucleus
- 2. Distribution of nucleons in the nucleus
 - Using the nuclear density function, write a function that will randomly distribute A nucleons in the nucleus (A=208 for Pb).
 - Make a plots of the x-y, and x-z coordinates of the nucleons in sample nucleus.
 - You will need to distribute them in 3D. You can use spherical polar coordinates, then convert to cartesian.

Project: Monte Carlo Model of Nuclear Collisions

- 3. Impact Parameter, b
 - Make a plot of the impact parameter probability distribution
 - For b = 6 fm, make an example collision between two nuclei. Plot the x-y coordinates of the nucleons in each nucleus.
- 4. Number of collisions, Number of participants
 - For each pair of nucleons (one from nucleus A, one from nucleus B), check if there is a collision.
 - Nucleon-Nucleon Collision:
 - Find the distance d in the x-y plane between each nucleon-nucleon pair (the z axis is the beam axis, see slide 6)
 - Collision: when $d^2 < \sigma/\pi$. Use $\sigma = 65$ mb (where 1 b = 10-²⁸ m²).
 - Any nucleon that collides is called a "participant". Color each participant a darker color.
 - Count the number of nucleon-nucleon collisions.

Project: Monte Carlo Model of Nuclear Collisions

- 5. Many collisions!
 - Simulate 10⁶ nucleus-nucleus collision events.
 - Draw a random impact parameter from the distribution (P(b) proportional to b).
 - Calculate Npart, Ncoll for each collision.
 - For those events where there was an interaction (Ncoll>=1), fill histograms of
 - the impact parameter, b.
 - the number of participants
 - the number of collisions
 - In part II of the project, we will model particle production, and compare it against data.

Interaction Probability vs. Impact Parameter, b

• After 10M events

• Beyond $b \sim 2R$ Nuclei miss each other Note fuzzy edge • Largest probability: Collision at b~12-14 fm • Head on collisions: b~0: Small probability

Binary Collisions, Number of participants

- If two nucleons get closer than $d^2 < \sigma/\pi$ they collide.
- Each colliding nucleon is a "participant" (Dark colors)
- Count number of binary collisions.
- Count number of participants

Cross Section in Nuclear Collisions

Nuclear forces are short range

- Range for Yukawa Potential $R \sim 1/M_x$
 - Exchanged particles are pions: $R \sim 1/(140 \text{ MeV}) \sim 1.4 \text{ fm}$
- Nuclei interact when their edges are ~ 1fm apart
- Oth Order: Hard sphere

•
$$\sigma_{\text{geom}} = \pi \left(R_1 + R_2 \right)^2 = \pi r_0^2 \left(A_1^{1/3} + A_2^{1/3} \right)^2$$

• $r_0 = 1.2 \text{ fm}$

- Bradt & Peters formula
 - • $\sigma_{\text{geom}} = \pi r_0^2 \left(A_1^{1/3} + A_2^{1/3} b \right)^2$
 - *b* decreases with increasing A_{min}
- J.P. Vary's formula:
 - $\sigma_{\text{geom}} = \pi r_0^2 \left(A_1^{1/3} + A_2^{1/3} b_0 (A_1^{-1/3} + A_2^{-1/3}) \right)^2$
 - Last term: curvature effects on nuclear surfaces

 R_2

R

Find N_{part}, N_{coll}, b distributions

Nuclear Collisions

Comparing to Experimental data: CMS example

- Each nucleon-nucleon collision produces particles.
 - Particle production: negative binomial distribution.
- Particles can be measured: tracks, energy in a detector.
- CMS: Energy deposited by Hadrons in "Forward" region

Centrality Table in CMS

• From CMS MC Glauber model.

CMS: HIN-10-001,
JHEP 08 (2011) 141

Centrality	0-5%	5-10%	10-15%	15-20%	20-25%	25-30%
N_{part}	381 ± 2	329 ± 3	283 ± 3	240 ± 3	203 ± 3	171 ± 3
Centrality	$30 extsf{-}35\%$	35 - 40%	40-45%	45 - 50%	50 - 55%	55-60%
N_{part}	142 ± 3	117 ± 3	95.8 ± 3.0	76.8 ± 2.7	60.4 ± 2.7	46.7 ± 2.3
Centrality	60 - 65%	65 - 70%	70-75%	75 - 80%	80-85%	85-90%
N_{part}	35.3 ± 2.0	25.8 ± 1.6	18.5 ± 1.2	12.8 ± 0.9	8.64 ± 0.56	5.71 ± 0.24