

Glauber Model + Particle Production Nodel

Modeling the experimental observables to determine centrality.

Manuel Calderón de la Barca Sánchez

Nuclear Charge Densities

Charge densities: similar to a hard sphere. Edge is "fuzzy": Woods-Saxon distribution

For the Pb nucleus (used at LHC)

Woods-Saxon density:

- R = 1.07 fm * A ^{1/3}
- a =0.54 fm
- A = 208 nucleons

• Probability : $\propto r^2 \rho(r)$

Pb Radial Volume Density

 $\rho(r) = \frac{\rho_0}{1 + e^{\frac{r-R}{a}}}$

Nuclei: A bunch of nucleons

Each nucleon is distributed with: P(r,θ,φ) = ρ(r)dV = ρ(r)r²drd(cosθ)dφ Angular probabilities: Flat in φ, flat in cos(θ).

Impact parameter distribution

- Like hitting a target:
- Rings have more area
- Area of ring of radius b, thickness db: $2\pi bdb$
- Area proportional to probability

Collision:

- 2 Nuclei colliding
- Red: nucleons from nucleus A
- Blue: nucleons from nucleus B

M.L.Miller, et al. Annu. Rev. Nucl. Part. Sci. 2007.57:205-243

Interaction Probability vs. Impact Parameter, b

• After 10M events

• Beyond $b \sim 2R$ Nuclei miss each other Note fuzzy edge • Largest probability: Collision at b~12-14 fm • Head on collisions: b~0: Small probability

Binary Collisions, Number of participants

- If two nucleons get closer than $d^2 < \sigma/\pi$ they collide.
- Each colliding nucleon is a "participant" (Dark colors)
- Count number of binary collisions.
- Count number of participants

Cross Section in Nuclear Collisions

Nuclear forces are short range

- Range for Yukawa Potential $R \sim 1/M_x$
 - Exchanged particles are pions: $R \sim 1/(140 \text{ MeV}) \sim 1.4 \text{ fm}$
- Nuclei interact when their edges are ~ 1fm apart
- Oth Order: Hard sphere

•
$$\sigma_{\text{geom}} = \pi \left(R_1 + R_2 \right)^2 = \pi r_0^2 \left(A_1^{1/3} + A_2^{1/3} \right)^2$$

• $r_0 = 1.2 \text{ fm}$

- Bradt & Peters formula
 - • $\sigma_{\text{geom}} = \pi r_0^2 \left(A_1^{1/3} + A_2^{1/3} b \right)^2$
 - *b* decreases with increasing A_{min}
- J.P. Vary's formula:
 - $\sigma_{\text{geom}} = \pi r_0^2 \left(A_1^{1/3} + A_2^{1/3} b_0 (A_1^{-1/3} + A_2^{-1/3}) \right)^2$
 - Last term: curvature effects on nuclear surfaces

 R_2

Find N_{part}, N_{coll}, b distributions

Nuclear Collisions

Comparing to Experimental data: CMS example

- Each nucleon-nucleon collision produces particles.
 - Particle production: negative binomial distribution.
- Particles can be measured: tracks, energy in a detector.
- CMS: Energy deposited by Hadrons in "Forward" region

Centrality Table in CMS

• From CMS MC Glauber model.

- CMS: HIN-10-001,
- JHEP 08 (2011) 141
- Phobos version of Glauber MC:
 - SoftwareX 1-2 (2015) 13-18
 - arXiv:1408.2549

Centrality	0-5%	5-10%	10-15%	15 - 20%	20-25%	25-30%
N_{part}	381 ± 2	329 ± 3	283 ± 3	240 ± 3	203 ± 3	171 ± 3
Centrality	30-35%	35 - 40%	40-45%	45 - 50%	50 - 55%	55-60%
N_{part}	142 ± 3	117 ± 3	95.8 ± 3.0	76.8 ± 2.7	60.4 ± 2.7	46.7 ± 2.3
Centrality	60-65%	65-70%	70-75%	75 - 80%	80-85%	85-90%
N_{part}	35.3 ± 2.0	25.8 ± 1.6	18.5 ± 1.2	12.8 ± 0.9	8.64 ± 0.56	5.71 ± 0.24

6/23/21

UA5 Multiplicity Distributions in $p + \overline{p}$

Fit of UA5 Data to NBD

 Midrapidity data • Fit to NBD: $\mu = 2.53 \pm 0.06$ Easy to do in ROOT with Minuit Data are fit to an analytic function Can use Gamma functions to get a

smooth curve

Fitting the E_T Distribution

- Each binary collision:
 - Produces particles or energy
 - For a given PbPb collision, with Ncoll binary collisions:
 - Sample from NBD, Ncoll times.
 - Gives one realization (pseudo-event) for that value of Ncoll
- Obtain a distribution for that value of Ncoll by repeating the above many times.
- Sum the results for all values of Ncoll
- This is no longer analytic!

Resulting distribution

Shape can be similar to experiment

- Will depend on choice of parameters: k, <n>
 - Here:
 - k=0.96
 - <n>=1.6
- In general, won't match data exactly.
- Need to fit the parameters.
 Note: fit from 0.5 to 5 TeV to avoid inefficiency from peripheral collisions

Convolution

$$(f * g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau$$

- 1. Express each function in terms of a dummy variable T.
- 2. Reflect one of the functions: $g(\tau) \rightarrow g(-\tau)$.
- 3. Add a time-offset, *t*, which allows g(t- au) to slide along the au-axis.
- Start t at -∞ and slide it all the way to +∞. Wherever the two functions intersect, find the integral of their product. In other words, compute a <u>sliding</u>, weighted-average of function f(τ), where the weighting function is g(-τ).

The resulting waveform (not shown here) is the convolution of functions f and g.

Convolution

• As an animation

Convolution

• Of a box and a truncated exponential-like function.

Convolution of Breit-Wigner & Gauss

• Animation code by Chris Flores

Convolution Animation, Drawing from NBD N_{coll} times. Convolving N_{coll} with Negative Binomial.

Manuel Calderón de la Barca

6/23/21

Scanning the parameter space

- For the Glauber MC, scan the parameter space by hand
 - First do a coarse pass
 - k = [0.5,1.5]
 - <n>=[0.5,1.5]
 - Then, zero in on range
 - 2nd pass, plot:
 - Minimum $\chi^2 \sim 500$
 - If minimum is not centered, need to recenter the range
 - Here, minimum in corner Manuel Calderon de la Barca

...and a 3d pass

Minimum near center of range

...and a 4th pass

4

Minimum near center again.

I					
885.6	676.0	470.4	299.9	222.9	-350
721.0	507.2	328.2	227.7	377.3	-300
-518.9	326.8	217.9	386.2	1068.9	200
304.3	229.6	523.9	1415.7	2672.1 <u>-</u>	- 150
326.9	948.3	2137.4	3402.6	3951.4	100 500
*	l.	er e l'er e			

...and a 5th pass

Y

- Minimum didn't change after zoom.
- Note correlation between the parameters!
- Have not reached level of $\Delta \chi^2 = 1$
 - Since function will have fluctuations, might not reach it

			milim		
-391.4	327.1	287.0	245.7	224.6	-60
341.4	284 5	251.6	228.6	234.0	- 55
	204.0	20110	220.0	201.0	- 50
281.0	238.4	217.9	241.2	290.3	-45
					-40
241.0	221.8	245.1	304.1	423.3	-35
225.7	258.5	319.8	447.1	643.6	-30
		Lundun			-25

With those parameters...

 Use parameters k, <n> found in previous step.

 Normalization is not yet optimal.

Minimizing χ^2 for Normalization...

 Vary Normalization
 Obtain value at minimum χ².

Rescan NBD parameters...

Keep Normalization at minimum.

- Rescan k, <n>
- Minimum stayed about where it was:
 - Little correlation
 between
 Normalization
 and NBD
 parameters

×	<u> </u>					100
0	-140.1	119.0	119.4	122.0	121.8	
)	-132.6	117.9	117.5	114.3	134.3	-160
)	119.9	105.3	98.7	118.1	152.6	—150 —140
)	121.0	108.2	113.1	135.2	157.1	-130 -120
)	118.0	114.7	121.5	146.4	183.6	-110
_						100
					<n></n>	

Last scan...

110.4103.7115.1119.3107.7105.3104.8119.8112.1111.1112.0102.898.7108.5117.2110.3106.4108.3116.5108.5110.3115.9113.6113.3110.2					
105.3 104.8 119.8 112.1 111.1 112.0 102.8 98.7 108.5 117.2 110.3 106.4 108.3 116.5 108.5 110.3 115.9 113.6 113.3 110.2	110.4	103.7	115.1	119.3	107.7_
112.0102.898.7108.5117.2110.3106.4108.3116.5108.5110.3115.9113.6113.3110.2	105.3	104.8	119.8	112.1	111.1
110.3 106.4 108.3 116.5 108.5 110.3 115.9 113.6 113.3 110.2	-112.0	102.8	98.7	108.5	117.2
110.3 115.9 113.6 113.3 110.2	110.3	106.4	108.3	116.5	108.5
	110.3	115.9	113.6	113.3	110.2

6/23/21

Final fit

• Model and data

