
Monte Carlo

Monte Carlo simulation of
a decay of a J/y meson (charm-
anticharm) into an e+e- pair. 

Real Data, p+p Run V
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Monte Carlo methods

¡ Statistical Sampling
l Name “Monte Carlo” was coined in the 1940’s, random 

numbers → gambling (Stanislaw Ulam’s uncle), probability 
distributions.

l Very useful in evaluation of probability distribution functions.
l Applications in high energy physics:

¡ Simulation of high energy collision events.
¡ Simulation of detector response.

l Main idea: 
¡ analysis of a complicated physical system.
¡ evolution of the physical system is governed by a process which is 

stochastic (probabilistic, non-deterministic)

http://library.lanl.gov/cgi-bin/getfile?00326866.pdf
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Monte Carlo Integration

¡ Commonly applied to 
multidimensional integration with 
complicated integrals and 
boundaries.

¡ Example: Overlap volume 
between two nuclei of radii R1 and 
R2, separated by a distance b.
l Model them as spheres: analytic.
l Realistic model: needs Monte-Carlo.
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Realistic models:
Nuclear density profiles

Hard sphere
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Monte Carlo integration:
simple example

¡ Integrating a 1-D function between two limits 
supplied by the user.

¡ Algorithm: 
l generate random points (x,y) within a rectangular 

reference region.
l Area of rectangle is known: A=bh
l For each point, check to see if it falls below or above 

the 1-D function.
¡ Make nt total random points, 
¡ find nb points with 0 < y < f(x)

l Estimate integral of function via:
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Monte Carlo integration:
Graphically. 

¡ Throw nt=1000 random 
points in the 2-D (x,y) 
space.
l e.g. sphere of unit 

radius: 
¡ -1 < x < 1, b=2
¡ -1 < y < 1, h=2

¡ Check if the point falls 
inside our limits
l e.g. if (x2+y2<1)
l found ni=794

¡ Integral:
l bh*(ni/nt)=3.176
l Statistical uncertainty 

on ni/nt: 1/Öni=0.03.
l Result = 3.18 ± 0.12



Assignment:
¡ Use the monte carlo integration program to find the area of a 

unit circle.  
¡ You may use symmetry to restrict your calculation to positive 

x- and y-values. 
l Use this to obtain a result for the value of p.
l Plot three histograms showing the result of 1000 pseudo 

experiments for calculating p, 
¡ one with 100 pairs, 
¡ one with 1000 pairs
¡ one with 10000 pairs. 

l For each of the histograms, show the mean and the 
standard deviation. Fit them with a Gaussian. 
¡ Understand the relation between the standard deviation obtained 

in each histogram and the statistical error quoted for the result of 
each pseudo-experiment.

7
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Probability Distribution Functions:
Stochastic Processes in Physics

¡ Stochastic variables:
l Variables that fluctuate from one realization 

of a system to another.
¡ Thermal effects.
¡ Manufacturing uncertainties.
¡ Quantum processes.

¡ Simple example: The 1-D Random Walk.
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Random Walk and Stochastic 
Processes

l RW: The particle will take N steps.  At each step, there is a 
50/50 chance for the particle to move right or left.

¡ Physical System is characterized by parameters that 
vary randomly.
l RW: two discrete values: ±1 distance units 

¡ + is right, - is left
¡ Want to calculate a global parameter that can be 

evaluated or measured.
l RW: Total initial displacement from the origin after N steps.

¡ General problem: Predict the probability that the 
global variables possess a specific value when 
averaged over all trial experiments.
l RW: Probability that the walk terminates at a given 

displacement from the origin.
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Making a random walk program in root:

int numberOfSteps = 40;
int numberOfRealizations = 1e4;

TH1D* mRandomWalkHisto = new TH1D 
("mRandomWalkHisto","Random 
Walk",2*numberOfSteps+1,-numberOfSteps-
0.5,numberOfSteps+0.5) 
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Code for loop
TRandom3 rnd3(0); // initialize random number generator with unique seed
for (int iRealization = 0; 

iRealization<numberOfRealizations; 
++iRealization) {

int position = 0;
for (int iStep = 0; iStep<numberOfSteps; ++iStep) {
double a = rnd3.Rndm(); //random number between 0-1
double step = 1; 
if (a<0.5) step=-1;
// at this point, 50% of the time step will be 1
// and 50% of the time step will be -1
position += step;

} // loop over steps
//cout << "Realization " << iRealization << ", position " << position << 
endl;

mRandomWalkHisto.Fill(position);
}// loop over realizations
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Result: Random Walk Histogram



Examples of Histograms of 
Random Distributions

13



14

Assignment: Random-Walk
¡ Code the Random Walk program in ROOT.

l Modify it to use a 2-D Histogram to do a 2-D random 
walk with unit length steps in which the angle that the 
walker describes with respect to any fixed axis is a 
uniformly distributed random variable on [0, 2p].  Use 40 
steps, and also use unit width.

¡ Chapter 10 from Klein-Godunov
l 1. Decay of monoenergetic pions. t=2.6 x 10-8 

s. E=200 MeV. Sample of 108 pions. How many 
survive after 20 m? (40 points)

l 2. Same as 1, but with a Gaussian distribution 
of energies: µE=200 MeV, sE=50 MeV. (30 
points)



Functional Inversion Method
¡ All cumulative distributions have a p.d.f. that is 

uniformly distributed
l If y=F(x), then the p.d.f. g(y) is uniform in (0,1) for any F(x)

being a cumulative distribution of a given p.d.f. f(x)

¡ Hence, the cumulative provides a mapping from the 
range of x to the range (0,1).
l We can invert this! Go from a uniform back to the given p.d.f.

¡ Algorithm:
l Throw r uniformly in (0,1)
l Find x such that
l Fill histogram of x values, it will be distributed according to f(x)

¡ Penalty: must perform the integral numerically if the 
function doesn’t have a nice integral form
7/28/20 MCBS - Phy 252C 15

−∞

x
∫ f (x ')dx ' = r



Example: 1/x distribution

¡ Let
¡ We need: 

7/28/20 MCBS - Phy 252C 16

f (x)= a
x

 for 0 < xmin < x <∞

xmin

x(r )
∫ a

x '
dx ' = a ln x

xmin
= r

x = xmine
r/a

a=0.1
xmin=10



Example: 1+cos(q) distribution
¡ Let x=cos(q), for (-1<x<1)

7/28/20 MCBS - Phy 252C 17

−∞

x(r )
∫ 1+ x '

2
dx ' = r  →  x(r)= −1+2 r



Gaussian random numbers
¡ Difficult to apply function inversion 

trick to Gaussian form
l No closed form exists for the 

cumulative, F(x)
¡ Other methods to get around this.
¡ Example: Box-Muller Transform

l Key idea: use 2-D instead of 1-D
l Obtain 2 Gaussian random numbers 

from 2 uniform random numbers
l A 2-D Gaussian with mean=0 in both 

directions and equal s is radially 
symmetric

l The 2-D Gaussian can be integrated 
in closed form!

¡ The extra r makes all the difference

7/28/20 MCBS - Phy 252C 18

dN ∝ e−x
2 /2e−y

2 /2dxdy

∝ e−r
2 /2 2πrdr



Gaussian random number, Algorithm
¡ Generate x, f using uniform 

distributions
¡ Obtain r from x using:

¡ With (r,f) calculate
l x=r cos f
l y=r sin f

¡ (x,y) will be distributed according to 
Gaussian distribution

7/28/20 MCBS - Phy 252C 19



Monte Carlo Integration
¡ in one or two dimensions, MC integration converges 

slowly with NMC
¡ in many dimensions MC integration converges much 

more rapidly than “grid” approaches
l Example: Trapezoidal rule integral in d dimensions: 1/n2/d

¡ for high energy physics:
l multidimensional phase space often needed
l Monte Carlo integration almost always wins

¡ when we generate lots of MC events in our samples, 
in fact this is what we are doing: approximating 
analytic integrals for, say, the acceptance or observed 
kinematic distributions by a MC integral

¡ converges like 1/√N always, regardless of dimension
7/28/20 MCBS - Phy 252C 20



Monte Carlo Model of nuclear 
collisions

¡ Nuclear Collisions, Glauber model

21
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Monte Carlo Model of Nuclear 
Collisions

1. Nuclear Density Function
l Make plots of the nuclear density for the Pb

nucleus
2. Distribution of nucleons in the nucleus

l Using the nuclear density function, write a 
function that will randomly distribute A 
nucleons in the nucleus (A=208 for Pb).

l Make a plots of the x-y, and x-z coordinates 
of the nucleons in sample nucleus.
¡ You will need to distribute them in 3D. You can 

use spherical polar coordinates, then convert 
to cartesian. 23



Calculate particle multiplicity

¡ Event displays

24



Final Project: Monte Carlo Model 
of Nuclear Collisions

3. Impact Parameter, b
l Make a plot of the impact parameter probability 

distribution
l For b = 6 fm, make an example collision between two 

nuclei. Plot the x-y coordinates of the nucleons in each 
nucleus.

4. Number of collisions, Number of participants
l For each pair of nucleons (one from nucleus A, one from 

nucleus B), check if there is a collision.
¡ Nucleon-Nucleon Collision:

l Find the distance d in the x-y plane between each nucleon-nucleon pair 
(the z axis is the beam axis, see slide 6)

l Collision: when d2<s/p. Use s = 60 mb (where 1 b = 10-28 m2).

¡ Any nucleon that collides is called a “participant”. Color each participant a 
darker color.

¡ Count the number of nucleon-nucleon collisions. 
25



Final Project: Monte Carlo Model 
of Nuclear Collisions

5. Many collisions!
l Simulate 106 nucleus-nucleus collision events.
l Draw a random impact parameter from the 

distribution (P(b) proportional to b).
l Calculate Npart, Ncoll for each collision.
l For those events where there was an 

interaction (Ncoll>1), fill histograms of
¡ the impact parameter, b.
¡ the number of participants
¡ the number of collisions

l In part II of the project, we will model particle 
production, and compare it against data. 26



Find Npart, Ncoll, b distributions

¡ Centrality determination in Nuclear Collisions
l Mapping of probability
l Highly probable events: large b, small Npart, Ncoll. “Peripheral 

Events”
l Low probability: small b, large Npart, Ncoll

27



Comparing to Experimental data:
CMS example

¡ Each nucleon-nucleon 
collision produces 
particles.
l Particle production: 

negative binomial 
distribution.

¡ Particles can be 
measured: tracks, 
energy in a detector.

¡ CMS: Energy 
deposited by Hadrons 
in “Forward” region 28



Centrality Table in CMS
¡ From CMS MC 

Glauber model. 
¡ CMS: HIN-10-001,
¡ JHEP 08 (2011) 141

¡ Estimate the numbers for 
the different “centrality 
classes” from your own 
calculation.

¡ Give average values of 
Ncoll, Npart, and b for 
centrality classes in steps 
of 10% of the total Ncoll
distribution.

29



Relativistic Kinematics

¡ You are given:
l Kinetic Energy, Pion Mas
l And we know:

l Therefore:

l From which we can get the pion 
velocity:

30

E = γmc2,KE = E −mc2

γ =
E
mc2

=
KE +mc2

mc2
=
KE
mc2

+1

β = 1−1/γ 2



Lorentz Boost transformations

¡ Given the boost velocity b, and the 
corresponding Lorentz factor g, if we 
measure the time and space 
separation of two events in one 
frame, the corresponding 
separations in the frame moving 
with velocity b are given by:

31

cΔt
Δx

"

#
$

%

&
'=

γ βγ

βγ γ

"

#
$
$

%

&
'
'

cΔt '
Δx '

"

#
$

%

&
'


