Monte Carlo

Monte Carlo methods

Statistical Sampling

- Name "Monte Carlo" was coined in the 1940's, random $numbers \rightarrow$ gambling (Stanislaw Ulam's uncle), probabil distributions.
- Very useful in evaluation of probability distribution function
- Applications in high energy physics:
	- \circ Simulation of high energy collision events.
	- \circ Simulation of detector response.
- Main idea:
	- \circ analysis of a complicated physical system.
	- \circ evolution of the physical system is governed by a process when stochastic (probabilistic, non-deterministic)

Monte Carlo Integration

Commonly applied to multidimensional integration with complicated integrals and boundaries.

- o Example: Overlap volume between two nuclei of radii R_1 and $R₂$, separated by a distance b.
	- Model them as spheres: analytic.
	- **.** Realistic model: needs Monte-Carlo.

Realistic models: Nuclear density profiles

Monte Carlo integration: simple example

- Integrating a 1-D function between two limits supplied by the user.
- \circ Algorithm:
	- generate random points (x,y) within a rectangular reference region.
	- Area of rectangle is known: $A = bh$
	- For each point, check to see if it falls below or above the 1-D function.

 \circ Make n_t total random points,

- \circ find n_b points with $0 < y < f(x)$
- Estimate integral of function via:

$$
\int f(x)dx \approx A \frac{n_b}{n_t}
$$

Monte Carlo integration: Graphically.

- \circ Throw n_t=1000 random points in the $2-D$ (x,y) space.
	- e.g. sphere of unit radius:

```
\circ -1 < x < 1, b=2
```

```
0 -1 < y < 1, h=2
```
 \circ Check if the point falls inside our limits

e.g. if
$$
(x^2+y^2<1)
$$

- found $n_i = 794$
- o Integral:
	- bh*(n_i/n_t)=3.176
	- **Statistical uncertainty** on n_i/n_t: $1/\sqrt{n}$ _i=0.03.
	- Result = 3.18 ± 0.12

Assignment:

- \circ Use the monte carlo integration program to find the area of a unit circle.
- \circ You may use symmetry to restrict your calculation to positive x- and y-values.
- Use this to obtain a result for the value of π .
- Plot three histograms showing the result of 1000 pseudo experiments for calculating π ,
	- \circ one with 100 pairs,
	- \circ one with 1000 pairs
	- \circ one with 10000 pairs.
- \bullet For each of the histograms, show the mean and the standard deviation. Fit them with a Gaussian.
	- \circ Understand the relation between the standard deviation obtained in each histogram and the statistical error quoted for the result of each pseudo-experiment.

Probability Distribution Functions: Stochastic Processes in Physics

Stochastic variables:

- Variables that fluctuate from one realization of a system to another.
	- o Thermal effects.
	- \circ Manufacturing uncertainties.
	- o Quantum processes.

 \circ Simple example: The 1-D Random Walk.

Random Walk and Stochastic Processes

RW: The particle will take N steps. At each step, there is a 50/50 chance for the particle to move right or left.

Physical System is characterized by parameters that vary randomly.

- RW: two discrete values: ± 1 distance units
	- \circ + is right, is left
- \circ Want to calculate a global parameter that can be evaluated or measured.

• RW: Total initial displacement from the origin after N steps.

- \circ General problem: Predict the probability that the global variables possess a specific value when averaged over all trial experiments.
	- RW: Probability that the walk terminates at a given displacement from the origin.

Making a random walk program in root:

int numberOfSteps = 40; int numberOfRealizations = 1e4;

 $TH1D*$ mRandomWalkHisto = new TH1D ("mRandomWalkHisto","Random Walk",2*numberOfSteps+1,-numberOfSteps- 0.5,numberOfSteps+0.5)

Code for loop

TRandom3 rnd3(0); // initialize random number generator with unique seed for (int iRealization = 0;

iRealization<numberOfRealizations;

++iRealization) {

int position = 0;

```
for (int iStep = 0; iStep<numberOfSteps; ++iStep) {
```
double a = rnd3.Rndm(); //random number between 0-1

double step = 1;

```
if (a<0.5) step=-1;
```
// at this point, 50% of the time step will be 1

// and 50% of the time step will be -1

position += step;

} // loop over steps

//cout << "Realization " << iRealization << ", position " << position << endl;

mRandomWalkHisto.Fill(position);

```
}// loop over realizations
```
Result: Random Walk Histogram

Examples of Histograms of Random Distributions

Assignment: Random-Walk

Code the Random Walk program in ROOT.

l Modify it to use a 2-D Histogram to do a 2-D random walk with unit length steps in which the angle that the walker describes with respect to any fixed axis is a uniformly distributed random variable on $[0, 2\pi]$. Use 40 steps, and also use unit width.

○ Chapter 10 from Klein-Godunov

- **1.** Decay of monoenergetic pions. $\tau = 2.6 \times 10^{-8}$ s. $E=200$ MeV. Sample of 10^8 pions. How many survive after 20 m? (40 points)
- 14 • 2. Same as 1, but with a Gaussian distribution of energies: μ_F =200 MeV, σ_F =50 MeV. (30 points)

Functional Inversion Method

- All cumulative distributions have a p.d.f. that is uniformly distributed
	- If $y = F(x)$, then the p.d.f. $g(y)$ is uniform in (0,1) for any $F(x)$ being a cumulative distribution of a given p.d.f. *f(x)*
- \circ Hence, the cumulative provides a mapping from the range of x to the range $(0,1)$.
	- \bullet We can invert this! Go from a uniform back to the given p.d.f.
- \circ Algorithm:
	- Throw r uniformly in $(0,1)$
	- Find x such that $\int_{-\infty}^{x} f(x')dx' = r$
	- ► Fill histogram of x values, it will be distributed according to $f(x)$
- \circ Penalty: must perform the integral numerically if the function doesn't have a nice integral form
 $7/28/20$
15

Example: 1/x distribution

 $\pmb{\times}$

Gaussian random numbers

Gaussian random number, Algorithm

\circ Generate ξ , ϕ using uniform distributions

\bigcirc Obtain r from ξ using:
 $\frac{\int_0^{r(\xi_r)} r' e^{-r'^2/2} dr'}{\int_0^{\infty} r' e^{-r'^2/2} dr'} = \xi_r \Rightarrow r(\xi_r) = \sqrt{-2 \ln \xi_r}$

- \circ With (r, ϕ) calculate
	- \bullet x=r cos ϕ

• y=r sin ϕ

 \circ (x,y) will be distributed according to Gaussian distribution 7/28/20 MCBS - Phy 252C 19

Monte Carlo Integration

in one or two dimensions, MC integration converges slowly with N_{MC}

- in many dimensions MC integration converges much more rapidly than "grid" approaches
	- Example: Trapezoidal rule integral in d dimensions: $1/n^{2/d}$
- \circ for high energy physics:
	- multidimensional phase space often needed
	- **Monte Carlo integration almost always wins**
- \circ when we generate lots of MC events in our samples, in fact this is what we are doing: approximating analytic integrals for, say, the acceptance or observed kinematic distributions by a MC integral
- \circ converges like 1/ \sqrt{N} always, regardless of dimension

Monte Carlo Model of nuclear collisions

o Nuclear Collisions, Glauber model

Monte Carlo Model of Nuclear **Collisions**

- 1. Nuclear Density Function
	- Make plots of the nuclear density for the Pb nucleus
- 2. Distribution of nucleons in the nucleus
	- Using the nuclear density function, write a function that will randomly distribute A nucleons in the nucleus (A=208 for Pb).
	- \bullet Make a plots of the x-y, and x-z coordinates of the nucleons in sample nucleus.

 \circ You will need to distribute them in 3D. You can use spherical polar coordinates, then convert to cartesian.

Calculate particle multiplicity

¡ Event displays

Final Project: Monte Carlo Model of Nuclear Collisions

- 3. Impact Parameter, b
	- Make a plot of the impact parameter probability distribution
	- For $b = 6$ fm, make an example collision between two nuclei. Plot the x-y coordinates of the nucleons in each nucleus.
- 4. Number of collisions, Number of participants
	- For each pair of nucleons (one from nucleus A, one from nucleus B), check if there is a collision.
		- ¡ Nucleon-Nucleon Collision:
			- Find the distance d in the x-y plane between each nucleon-nucleon pair (the z axis is the beam axis, see slide 6)
			- Collision: when $d^2 < \sigma/\pi$. Use $\sigma = 60$ mb (where 1 b = 10-²⁸ m²).
		- \circ Any nucleon that collides is called a "participant". Color each participant a darker color.
		- \circ Count the number of nucleon-nucleon collisions.

Final Project: Monte Carlo Model of Nuclear Collisions

5. Many collisions!

- \bullet Simulate 10⁶ nucleus-nucleus collision events.
- Draw a random impact parameter from the distribution (P(*b*) proportional to *b*).
- Calculate Npart, Ncoll for each collision.
- For those events where there was an interaction (Ncoll>1), fill histograms of

¡ the impact parameter, *b*.

- \circ the number of participants
- \circ the number of collisions
- In part II of the project, we will model particle production, and compare it against data. ²⁶

Find Npart, Ncoll, b distributions

Centrality determination in Nuclear Collisions

- Mapping of probability
- Highly probable events: large b, small Npart, Ncoll. "Peripheral Events"
- Low probability: small b, large Npart, Ncoll

Comparing to Experimental data: CMS example

- o Each nucleon-nucleon collision produces particles.
	- **Particle production:** negative binomial distribution.
- ¡ Particles can be measured: tracks, energy in a detector.
- CMS: Energy deposited by Hadrons in "Forward" region and $\frac{1}{28}$

Centrality Table in CMS

From CMS MC Glauber model.

CMS: HIN-10-001, JHEP 08 (2011) 141

- \circ Estimate the numbers for the different "centrality classes" from your own calculation.
- \circ Give average values of Ncoll, Npart, and b for centrality classes in steps of 10% of the total Ncoll distribution.

Relativistic Kinematics

 \circ You are given:

- Kinetic Energy, Pion Mas
- And we know: $E = \gamma mc^2$, $KE = E mc^2$

• Therefore:
$$
\gamma = \frac{E}{mc^2} = \frac{KE + mc^2}{mc^2} = \frac{KE}{mc^2} + 1
$$

• From which we can get the pion velocity: $\beta = \sqrt{1-1/\gamma^2}$

Lorentz Boost transformations

 \circ Given the boost velocity β , and the corresponding Lorentz factor γ , if we measure the time and space separation of two events in one frame, the corresponding separations in the frame moving with velocity β are given by:

$$
\left(\begin{array}{c}\n c\Delta t \\
\Delta x\n\end{array}\right) = \left(\begin{array}{cc}\n \gamma & \beta \gamma \\
\beta \gamma & \gamma\n\end{array}\right) \left(\begin{array}{c}\n c\Delta t' \\
\Delta x'\n\end{array}\right)
$$