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The Glauber model provides insight into the initial state of nuclear collisions by treating them in
terms of the interactions of their constituent nucleons, in accordance with theories about the scat-
tering of composite particles. These phenomenological techniques are commonly used to determine
various geometric quantities associated with such femtoscopic many-body systems. The Monte Carlo
Glauber approach uses a random impact parameter and measured nuclear densities to investigate
quantifiable properties such as the particle multiplicity and the average geometric eccentricity for
heavy ion collisions. The former involves the incorporation of a particle production model to plot
the total transverse energy or the number of particles produced at midrapidity, both being measures
of centrality. The latter delves into the eccentricity of different event classes, which can be used to
characterize various collision shapes for measurements of elliptic flow of heavy mesons. The results
of both applications are then compared with analyses of data from the CMS and STAR experiments
as part of efforts to study the properties of the ultrahot, super-dense phase of matter known as the
Quark-Gluon Plasma.

I. INTRODUCTION

High energy physics seeks to further our understand-
ing of the fundamental nature of matter, from the fa-
miliar world of electromagnetically-interacting electrons
and nucleons to a more exotic phase of matter thought to
have existed only microseconds after the Big Bang. One
of these highly sought after and studied states is known
as the Quark-Gluon Plasma (QGP), in which baryonic
matter exists as a hot, dense mixture of quarks and glu-
ons, collectively known as partons. These partons are be-
lieved to have occupied this color-deconfined state within
the first 10−6 to 10−5 seconds of the universe’s existence,
at a temperature still above 1012 K, just prior to coalesc-
ing into more familiar hadronic matter.

In order to recreate the extreme conditions of this
early state, particle colliders like the LHC and RHIC ac-
celerate heavy atomic nuclei to ultra-relativistic speeds
in order to squeeze the highest possible energies into
the smallest possible volume [1]. The resulting violent
collisions melt the nucleons, transforming the confined
quarks (held within hadrons due to the asymptotic free-
dom property of the strong force) into a quasi-free QGP
state. On the order of 10−23 seconds later, the quarks,
antiquarks, and gluons created from the available energy
recombine into hundreds of hadrons that explode out-
ward into the detectors. Understanding the bulk and
transport properties of the QGP and the phase transi-
tion to this color-deconfined state first requires a better
comprehension of the fundamental force governing the
QGP: quantum chromodynamics.
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A. Quantum chromodynamics

Protons and neutrons are each composed of three va-
lence quarks, which are kept confined within each nucleon
by the strong nuclear force, an interaction described by
quantum chromodynamics (QCD). QCD is one of the
three quantum field theories that make up the Stan-
dard Model of fundamental interactions among elemen-
tary particles; the other two are quantum electrodynam-
ics for the electromagnetic force, and quantum flavordy-
namics for the weak nuclear force. Interestingly, most of
the baryonic mass in the universe actually comes from
QCD. The Higgs mechanism is responsible for the mass
of the quarks (and the electrons) themselves, but that is
only 1% of the total nucleon mass, meaning the remain-
ing 99% comes from the strong interactions between the
quarks [2]. Furthermore, nucleons comprise most of the
mass of the atom and thus QCD is responsible for the
majority of everyday mass. Understanding the behavior
of this force at high energies could contribute to a better
understanding of nuclear matter in general.

The strong force is mediated by eight neutral gluons,
which are massless spin-1 bosons that are self-interacting
because they can carry color and anti-color charge them-
selves. Color charge is analogous to electric charge, ex-
cept for the fact that it is not static; quarks can change
color because the gluons they exchange carry color charge
themselves, while an electron will always be negatively-
charged since the QED mediator, the photon, carries
no electric charge. There are three color charges—red,
green, blue—and their respective anticolors, with neutral
“white” combinations being made as either color plus an-
ticolor or as three different colors or anticolors.

One of the most unusual aspects of QCD is the phe-
nomenon of asymptotic freedom, a product of gluon self-
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coupling in which the strong force increases as the dis-
tances between the color-charged objects grows; this is
entirely contrary to the familiar behavior of the elec-
tromagnetic and gravitational forces, which drop off in
strength as the distance between the interacting objects
increases. High energies, and therefore short distances,
are sought out since the coupling constant shrinks in
this limit. This bizarre property, which requires a non-
Abelian gauge theory to be described, complicates the
study of QCD matter like the QGP [3].

B. Quark-Gluon Plasma

In those first few microseconds of the universe (the
“primordial universe” shown in Fig. 1), the quarks and
gluons that make up ordinary nuclear matter existed
as this interesting, strongly-interacting yet deconfined
phase. The high temperatures and densities allow the
partons to be asymptotically free. Given the timescale
of its proposed existence, studying the QGP provides in-
sights into the properties of the very early universe.

One of the key difficulties that arises when trying to
study the QGP is the previously mentioned phenomenon
of confinement and asymptotic freedom. As one tries to
separate the quarks, the system reaches a point where it
becomes energetically favorable to create a new quark-
antiquark pair out of the vacuum, which can then re-
combine with the escaping quark to make a new hadron.
Given that behavior, freed solitary quarks have never
been observed, and the closest that can be achieved is
this quasi-free QGP state.

The QGP is called a “plasma” because it was expected
to behave like an ultrahot weakly-coupled gas of charged
particles. However, experiments have found it act more
like a strongly-coupled liquid—a perfect fluid exhibiting
collective flow with almost no viscosity. The best param-
eter to describe the observed system is one typically used
for liquids: the ratio of shear viscosity to entropy density,
η/s. This quantity was found to be nearly zero, making
this substance one of the first experimentally accessible
perfect liquids ever isolated in a lab [4].

FIG. 1. Phase diagram of QCD matter, showing the transition
at Tc = 150 − 190 MeV from ordinary confined matter to a
deconfined QGP state (source: ALICE Collaboration).

1. Experimental evidence of QGP

There are three pillars of evidence for QGP formation
in experimental settings: heavy quarkonium suppression,
jet production and quenching, and elliptic flow.

a. Quarkonium suppression Extreme color fields
created inside the plasma can screen heavy quarkonia,
which are mesons formed from heavy quark-antiquarks
pairs. Screening causes the valence quarks to dissociate
and form open heavy flavor mesons before the quarko-
nium can escape the QGP and undergo standard decay
in the surrounding vacuum (which would produce de-
tectable signatures) [2]. As the QGP gets hotter, the
free partons can screen at smaller and smaller distances,
though at any temperature, the weakly-bound quarkonia
will be more suppressed than the comparatively unsup-
pressed tightly-bound quarkonia. Thus, measuring sup-
pression of different quarkonia points to the length scale
at which the QGP starts to screen, which in turn informs
about the temperature [5].

b. Jet quenching A key aspect of QCD, the produc-
tion of jets involves the high-momentum scattering of
quarks and gluons that produces narrow, back-to-back
sprays of hadrons. Head-on collisions between partons
generate bursts of energy that quickly condense into
“jets” of pions, kaons, and other particles. Formed in
pairs, one of these jets gets weakened or extinguished if
it has to traverse the dense fireball produced in a heavy
ion collision, experiencing significant energy loss due to
interactions with the quark- and gluon-rich medium. The
jets are considered hard probes in that they are strongly
interacting but moving fast enough to not be completely
absorbed by the medium. The amount of quenching, the
orientation and composition of the jets, and the man-
ner in which the jets transfer energy and momentum all
reveal information about the contents of the collision fire-
ball and therefore the properties of the QGP [6].

FIG. 2. Geometry of a non-central heavy ion collision.

c. Elliptic flow An important feature of a hot,
dense, strongly-coupled QGP is the azimuthal anisotropy
of emitted charged particles. Non-central nuclear colli-
sions produce an almond-shaped overlap region, as shown
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in Fig. 2. The strong rescattering of partons in the initial
state of the collision leads to the formation of local ther-
mal equilibria, which in turn causes the buildup of non-
uniform pressure gradients in the almond. This drives
anisotropic expansion of the plasma such that outgoing
particles are emitted preferentially along the direction
of the impact parameter vector between the two nuclei.
Flow has final state observables (e.g. pions formed late in
the evolution), but the momentum distribution preserves
information from early in the collision because of its in-
trinsic connection with the initial spatial anisotropy. The
medium’s high opacity and the elliptical distribution of
emitted hadrons are both more characteristic of a fluid; if
the QGP behaved like a gas, the hadrons would emerge
uniformly in all directions from a less opaque plasma.
Continuing to study flow in this system, especially ellip-
tic flow, will provide more insight into the QGP’s bulk
properties (e.g. viscosity, equation of state) [2].

C. Experimental facilities

The aforementioned signatures of QGP formation are
studied at the Large Hadron Collider and at Brookhaven
National Lab’s Relativistic Heavy Ion Collider, within
the Compact Muon Solenoid (CMS) and the Solenoidal
Tracker at RHIC (STAR) experiments, respectively;
other experiments at these colliders focus on other press-
ing physics questions. In both general purpose detectors,
violent collisions between highly relativistic heavy nuclei
generate femtoscopic fireballs of melted nucleons that can
send hundreds of particles flying out into the surround-
ing trackers and calorimeters. In particular, these exper-
iments rely on Pb and Au nuclei, which are especially
dense compared to normal nuclear matter and therefore
capable of reaching the extreme pressure and tempera-
ture conditions needed to create a QGP.

1. Compact Muon Solenoid

One of two general purpose detectors at the LHC, the
CMS experiment is pursuing a broad range of physics
questions, from the Standard Model and the Higgs boson,
to searches for extra dimensions and dark matter candi-
dates. Following a high energy collision of two heavy
nuclei in the heart of the detector, the innermost silicon
trackers first reconstruct the paths of the charged parti-
cles coming out of the high energy collision. Next, the
two calorimeters measure the energy of the outgoing par-
ticles; the electromagnetic calorimeter measures electrons
and photons using PbWO4 crystals, while the hadron
calorimeter detects any particle made of quarks or glu-
ons. The previous parts are enclosed in a superconduct-
ing solenoid that generates a 3.8 T magnetic field. Lastly,
the iron magnet return yoke stops all remaining particles
from reaching the expansive muon chambers dedicated
to stopping the very weakly interacting muons.

2. Solenoidal Tracker At RHIC

While CMS investigates a variety of scientific inquiries,
STAR is designed to focus on the formation and behav-
ior of high-density, strongly-interacting matter. STAR is
schematically similar to CMS in its concentric arrange-
ment of trackers (silicon and gaseous), an electromag-
netic calorimeter, and a solenoidal magnet around the
beam interaction region. The heart of STAR is the Time
Projection Chamber (TPC), which serves as the primary
tracking device, measuring particles’ tracks, momenta,
and ionization energy loss [7]. The TPC is surrounded
by the Time Of Flight detector, which measures the time
of flight that can then be used with the corresponding
transverse momentum to identify particles. These are all
contained within a solenoidal magnet operating at 0.5 T.

II. THE GLAUBER MODEL

Given the complexity of heavy ion collisions, it is nat-
ural to wonder about the number of incident nucleons
that actually participate in and the shape of the overlap
between the nuclei for a particular interaction. The phe-
nomenological techniques that have been developed to
figure out these quantities for these types of femtoscopic
many-body systems are known as Glauber models.

FIG. 3. Schematic of a collision between two nuclei, with
the offset between their two centers being represented by the
impact parameter vector b.

The Glauber model treats collisions between nuclei as
independent sequences of individual nucleon-nucleon in-
teractions, getting its theoretical basis from quantum
theories about scattering of composite particles [8]. Since
the femtometer scales on which these collisions occur pre-
cludes direct observation, the impact parameter (a vec-
tor b representing the offset between the centers of the
two nuclei, see Fig. 3), the number of nucleons that
experience at least one nucleon-nucleon collision (num-
ber of “participants”, Npart), and the number of binary
nucleon-nucleon collisions (Ncoll) all must be estimated
from experimental data using these theoretical meth-
ods. Together with the impact parameter b, the quan-
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tities Npart and Ncoll characterize the centrality of the
collision—i.e. its size, shape, and degree of overlap be-
tween the incident nuclei at the interaction point.

For a Monte Carlo Glauber (MCG) model, the only
required inputs are: a randomly generated impact pa-
rameter, a measured nuclear density function ρ(r), and a
measured inelastic nucleon-nucleon cross-section σNN

inel [9].
This last parameter is calculated as the total nucleon-
nucleon cross-section minus the elastic nucleon-nucleon
cross-section, both of which are experimentally measur-
able quantities. The focus is on inelastic collisions be-
cause those actually produce new particles, as opposed
to elastic collisions in which the nucleons simply scatter
off each other without fragmenting. The specific value of
σNN
inel relates to how big a nucleon is, which in turn de-

pends on its velocity/energy; higher center-of-mass ener-
gies are associated with larger cross-sections. It is used to
determine how close the nucleon trajectories need to be
in order for a collision to occur. Since it is based purely
on nuclear geometry, this type of modeling is fairly sim-
ple and does make some fundamental assumptions. Here,
the nucleons are assumed to follow straight line trajecto-
ries, and σinel

NN is taken to be independent of any previous
collisions, and therefore the nuclei are modelled as just
passing through each other.

A. Woods-Saxon nuclear density function

The only input values that must be known prior to
constructing and utilizing an MCG model are the previ-
ously mentioned inelastic nucleon-nucleon cross-section
and the parameters for the nuclear density function, in
this case the Woods-Saxon equation in Fig. 4.

FIG. 4. Radial density function for a Pb nucleus (r0 = 6.62
fm, a = 0.542 fm) assuming a Woods-Saxon distribution.

The Woods-Saxon governs the density of nucleons as a
function of distance from the center of the nucleus, where

ρ0 is the nuclear density at the center, r0 is the nuclear
radius, and a is the skin depth (which characterizes how
sharp the edge of the nucleus is). The Woods-Saxon dis-
tribution becomes a step function in the hard sphere limit
(as a goes to zero) since the nucleus is now being treated
as a sphere-shaped object with well-defined, and not dif-
fuse, boundaries.

The radial probability function is calculated by mul-
tiplying the Woods-Saxon by r2. This equation is then
used to randomly distribute the nucleons that will be
accelerated towards each other in any given run of the
model. The x, y, and z coordinates for each of the 416
nucleons in Pb+Pb, or all 394 in Au+Au, are randomly
determined according to a ρ(r) ∗ r2 like in Fig. 5.

FIG. 5. Radial probability function for a Pb nucleus.

B. Impact parameter generation

After the nucleons in the simulation have been ran-
domly distributed in accordance with the Woods-Saxon,
all of the constituents of one nucleus are shifted laterally
by the impact parameter. A specific value of b is drawn
from the distribution

dσ

db
= 2πb ,

indicating that the probability of a given impact parame-
ter follows a linear trend. Selecting an impact parameter
is analogous to trying to hit a bullseye, in that the target
area is proportional to the probability. Thus, the proba-
bility of a head-on, central collision (b = 0) is much lower
than probability of a more peripheral collision (large b).
In reality, the impact parameter vector can point in any
direction because of the assumed spherical symmetry of
the system, but for convenience the offset is taken to be
in the +x direction in this model.
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In order for any two nucleons to experience a binary
collision, the following condition for the distance d be-
tween them must be satisfied:

d ≤
√
σNN
inel/π .

For a collision between nucleus A and nucleus B, every
nucleon in A is checked against every nucleon in B to de-
termine if their randomly generated coordinates will lead
to a binary nucleon-nucleon collision. Every nucleon that
experiences at least one binary collision is marked by a
darker color in Fig. 6 to distinguish it from the spectator
nucleons. Note the almond-shaped overlap region visible
from this z-direction (beam-line) view; the particles emit-
ted along the short axis of the almond will experience the
greatest momentum boost.

FIG. 6. Distribution of all 416 nucleons for a Pb+Pb collision
at
√
sNN = 2.76 TeV with σNN

inel = 65 mb and b = 6 fm.

C. Resulting histograms and correlations

After running 106 pseudo-experiments of the model,
about 75% of which resulted in at least one binary
nucleon-nucleon collision, the following distributions of
b, Npart, and Ncoll were generated. The impact parame-
ter histogram (Fig. 7) shows the number of counts of b
increases linearly with the value of b itself up until about
twice the nuclear radius, at which point the probability
of any nucleon-nucleon collisions starts to drop off. How-
ever, it is not a sharp drop off because the nuclei are not
hard spheres, but instead are a bit more diffuse (as seen
in the nucleon distribution plot in Fig. 6). The Npart

histogram (Fig. 8) does have a sharp drop off since there
is a well-defined maximum number of participants (416
for Pb+Pb, 394 for Au+Au). Lastly, the Ncoll histogram
(Fig. 9) exhibits the characteristic horseback shape.

FIG. 7. Histogram of impact parameter values.

FIG. 8. Histogram of resulting Npart values.

FIG. 9. Histogram of resulting Ncoll values.
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FIG. 10. Correlation between Npart and b.

As expected, there is a positive correlation between
Npart and Ncoll, since a greater number of interacting nu-
cleons would logically be associated with a greater num-
ber of nucleon-nucleon collisions occurring. There is a
clear negative correlation between the impact parameter
and both Npart (shown in Fig. 10) and Ncoll; a smaller
impact parameter corresponds to a more central collision
that sees higher numbers of participants and binary col-
lisions due to the increased overlap between the nuclei.
In the correlation plot, one can clearly see a hot spot (i.e.
the most probable outcome of a run, the dark red portion
of Fig. 10) at high b, low Npart, and low Ncoll.

None of the variables noted previously—b, Npart, or
Ncoll—can be measured experimentally, so in order to
more directly compare the model against experimental
data, a particle production model must be incorporated
into the existing MCG simulation. This step involves
the calculation of a centrality variable using a negative
binomial distribution (NBD).

D. Particle production model and the negative
binomial distribution

Centrality variables are measurable quantities that re-
late to how head-on a given nucleus-nucleus collision
is. CMS uses the total transverse energy ΣET, while
STAR uses the particle multiplicity dNch/dη at midra-
pidity (around η = 0, about ±30◦ from perpendicular
to the beam line). In a detector, these are measured as
tracks in the trackers (for the multiplicity) or as energy
deposited in the calorimeters (for ΣET). Both are calcu-
lated using an NBD, expressed in terms of parameters µ
and k using gamma functions as

Γ(k + n)

k!Γ(n)
· (µ/k)n

(1 + µ/k)n+k
,

where n represents the amount of ET or the number of
particles produced in a particular nucleon-nucleon colli-
sion, µ is the mean ET or multiplicity, and k is a parame-

ter relating to the width of the distribution [9]. The total
transverse energy or multiplicity distribution is obtained
by convolving the NBD with the Ncoll histogram.

In both cases, a value is randomly drawn from the
NBD to determine the amount of transverse energy or
the number of particles produced in one nucleon-nucleon
collision. This random drawing is repeated Ncoll times
and summed to calculate the ΣET or total dNch/dη for
a particular nucleus-nucleus collision that had exactly
Ncoll nucleon-nucleon collisions. That entire process is
then repeated for however many events out of the 106

pseudo-experiments had that specific Ncoll. Once those
calculations have been completed, the generated ΣET or
dNch/dη distribution can be compared with and fit to
experimental data by optimizing the NBD parameters.

E. Parameter fitting

For Pb+Pb at
√
sNN = 2.76 TeV, the best values of

µ, k, and the normalization factor were determined by
minimizing χ2 between the generated and experimental
ΣET distributions. A measure of how good a fit is, χ2

is calculated by summing up (O − E)2/E for all points,
where O is the observed (generated) value and E is the
expected (experimental) value of ΣET. The data were
only fit for 0.5-5 TeV, instead of the full 0-5 TeV range, to
avoid the inefficiencies of the most peripheral collisions.
First, the χ2 values were calculated in a coarse pass over
a range of µ and k. Then, the scaling of the generated
ΣET histogram was varied to find the best value of the
normalization factor. This was followed by a finer res-
canning of the µ and k parameter space to find a local
minimum in χ2. The goal of the parameter fitting was to
reach a χ2 around 100, since the system has 98 degrees
of freedom from 100 bins in the histogram of the central-
ity variable minus two parameters. This was achieved in
the final scan, shown in Fig. 11, pointing to µ = 1.39,
k = 0.45, and norm= 0.041 as the values that best match
the generated distribution to the CMS data.

FIG. 11. Final scan of the µ and k parameter space.
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F. Determining centrality classes

Calculations of centrality variables are used to create
centrality classes, which divide up the results of a par-
ticular collision type into fractions of the total integral
of the centrality variable distribution. The convention is
that 0% represents the most central collision and 100%
corresponds to the most peripheral. Cuts are made in the
total transverse energy (for Pb+Pb data from CMS) or in
the particle multiplicity (for Au+Au data from STAR) to
divide the integral in 5% increments, and the ranges cor-
responding to each percentile are noted so average values
of other variables (like Npart) as a function of central-
ity could be determined. Fig. 12 shows the generated
ΣET histogram using the final NBD parameters (listed
in the previous section) in comparison with CMS data
for Pb+Pb at

√
sNN = 2.76 TeV. The centrality classes

from 0% to 70% based on cuts in ΣET are marked by the
green dashed lines, shown for the 0% to 50% classes in 5%
increments, then in 10% increments for the remainder.

FIG. 12. Final ΣET histogram for Pb+Pb at 2.76 TeV (red
line) with centrality classes (green dashed lines) and CMS
data for comparison (blue points with error bars) [10].

III. ECCENTRICITY AND OVERLAP AREA

Both the eccentricity ε and overlap area S characterize
the almond-shaped overlap region in the initial state of
the collision, which is irregular, determined by the impact
parameter, and whose orientation fluctuates from event
to event. The eccentricity in particular quantifies the
initial spatial anisotropy that ultimately results in the
anisotropic final momentum distribution for the emitted
particles seen in elliptic flow.

FIG. 13. Reaction plane vs. participant plane.

Both geometric quantities are defined in two coordi-
nate systems, shown in Fig. 13: the reaction plane (de-
termined by the beam direction and the impact parame-
ter vector); and the participant plane (determined by the
beam direction and a rotated x′y′ frame that aligns itself
with the participants. The planes are different because
the spatial distribution of participating nucleons is not
necessarily symmetric with respect to the reaction plane.
Furthermore, the true reaction plane cannot be known
experimentally, which is why the participant eccentricity
is used more often. This difference translates into the
following equations, where the participant version has an
extra covariance term in it that rotates the coordinate
system depending on the locations of the participants:

εRP =
σ2
y − σ2

x

σ2
y + σ2

x

, εpart =

√
(σ2

y − σ2
x)2 + 4σ2

xy

σ2
y + σ2

x

SRP = π
√
σ2
xσ

2
y , Spart = π

√
σ2
xσ

2
y − σ2

xy

in which the variances and the covariance are calculated
as σ2

x =< x2 > − < x >2, σ2
y =< y2 > − < y >2,

and σxy =< xy > − < x >< y > [11]. By defini-
tion, εpart can only have positive values and represents
the maximum calculated eccentricity for a given collision
regardless of the direction of the initial b vector.

IV. RESULTS

A. Au+Au at
√
sNN= 200 GeV

For my initial calculations of ε and S, I switched from
Pb+Pb at

√
sNN = 2.76 TeV to Au+Au at

√
sNN = 200

GeV since the paper in which I had found the relevant
equations focused on that type of heavy ion collision [11].
The behavior of the average reaction-plane and partici-
pant eccentricities as functions of the average number of
participants was found to be consistent with expectations
from published plots, with Fig. 14 showing this expected
behavior. The monotonic trend observed for the average
εpart is not seen with εRP; the drop off around twice the
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nuclear radius occurs because for very peripheral colli-
sions there are larger fluctuations in the shape and ori-
entation of the already small nuclear overlap and rotating
the coordinate system to better line up with the partic-
ipants counteracts that. Additionally, note that at high
numbers of participants, the two coordinate systems and
calculation methods for ε are more consistent with each
other than in the low Npart case—another example of the
generally higher discrepancy/uncertainty associated with
peripheral collisions.

FIG. 14. Average reaction-plane and participant eccentricity
as a function of the average Npart for Au+Au at 200 GeV.

Table I (pg. 11) shows the calculated eccentricities and
overlap areas, in addition to the average impact param-
eter and average number of participants, for a variety of
centrality classes. This table was meant to reproduce the
values shown in a similar table (see Table II, pg. 11) in
Hirano and Nara’s paper. While the values do not per-
fectly agree, I can attribute any discrepancies to two main
differences in methodology. First, Hirano and Nara as-
sume a finite size profile for the nucleons (i.e. not a delta
function), so their nuclear density function is not exactly
a Woods-Saxon distribution and therefore they use dif-
ferent input parameter values. Specifically, for Au+Au,
they use ρ0 = 0.1695 fm−3, r0 = 6.42 fm and a = 0.44
fm, while my table was filled using r0 = 6.38 fm and
a = 0.535 fm (same ρ0) [11]. Secondly, as theorists, the
authors determined their centrality classes based on cuts
in impact parameter and not particle multiplicity. This
is not experimentally feasible because the offset between
the nuclei in any collision is not controllable, nor is the
impact parameter a quantity that can actually be mea-
sured. For the sake of being thorough, I did redo the cal-
culations of the average values based on cuts in b instead

of refMult, and the values were much closer—for exam-
ple, it brought the averageNpart for the 60-70% centrality
class down from 29 to 23 (with the goal value being 19)—
so it is clear that the choice of centrality variable matters.
The overestimation of the number of participants likely
also relates to the lack of exclusion in my model; that is,
when randomly distributing the nucleons, I do not check
that each nucleon is initially at least 1 fm from the other
constituents of the nucleus it belongs to thereby allow-
ing the nucleons to be closer together and therefore more
likely to interact. Even with those differences in the con-
struction of our MCG models, the appropriate trends in
the data are preserved; collisions at small impact param-
eter are associated with high Npart, large overlap areas,
and small eccentricities, while less central collisions at
large impact parameter have comparatively lower Npart,
smaller overlap areas, and large eccentricities.

B. Pb+Pb at
√
sNN= 2.76 TeV

FIG. 15. Average reaction-plane and participant eccentricity
as a function of average Npart for Pb+Pb at 2.76 TeV.

As with the Au+Au collisions, the behavior of the
average reaction-plane and participant eccentricities as
functions of Npart is consistent with expectations, in this
case from experimental data. In Fig. 15, the partici-
pant eccentricity value calculated using my MCG model
(blue points) are clearly in good agreement with the
CMS data (purple points with error bars) [12]. These
experimentally-determined values are also listed in Ta-
ble IV (pg. 11), which can be directly compared with
the values in Table III of the average ε, S, b, and Npart

for various centrality classes generated from my simula-
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tion. The average number of participants is again being
slightly overestimated, but the eccentricity and overlap
area values still remain fairly consistent between the data
and the model.

FIG. 16. Correlation between εpart and Npart.

Fig. 16 shows the approximately negative correlation
between the participant eccentricity and the number of
participants for a given nucleus-nucleus collision. More
importantly, the distribution of eccentricity values be-
comes much broader and more diffuse for low Npart. In
those more peripheral events, fluctuations in the posi-
tions of the nucleons from event to event have a greater
impact on the resulting calculation; furthermore, that
demonstrates the needs for Monte Carlo methods in these
simulations, since only using the means would not cap-
ture all the physics at work in these complicated pro-
cesses.

V. CONCLUSIONS AND FUTURE WORK

The importance of knowing these geometric quanti-
ties, especially the eccentricity, comes from their rele-
vance to elliptic flow analysis. The eccentricity charac-
terizes the initial spatial anisotropy, which is responsible
for the final anisotropy in the momentum distribution for
the emitted charged particles. The transfer of anisotropy
is studied as part of the collective flow of quarks and
gluons observed in the dense medium produced in rela-
tivistic heavy ion collisions. This elliptic flow is quan-
tified by its strength v2—the second term in a Fourier
expansion of the particles’ invariant yield (i.e. the inte-
grated flow over a broad range of rapidity and transverse
momentum) [12]. Eccentricity calculations will be use-
ful for characterizing the various collision shapes across

different event classes and for measurements of elliptic
flow of heavy mesons. Quark flow has been observed
for light quarks, but current experimentation is looking
into whether heavy quarks undergo hydrodynamic flow
as well. In both cases, elliptic flow reveals information
about the initial conditions of the collision because it pre-
serves the anisotropy. Knowing the eccentricity would
also be useful for analysis of eccentricity-scaled elliptic
flow, v2/εpart; dividing v2 by the eccentricity can poten-
tially remove the dependence of the collective flow and
the anisotropy parameter on the initial nucleus-nucleus
collision area, thereby enabling better comparison of re-
sults across multiple centralities, colliding species, and
center-of-mass energies.

Future work on this particular project involves the
analysis of more datasets, specifically Pb+Pb at

√
sNN =

5.02 TeV, to provide more values of ε for elliptic flow anal-
ysis. This phenomenon of elliptic flow is a crucial pillar
of evidence for the formation of a quark-gluon plasma
in experimental settings. Creating a QGP requires colli-
sions between heavy ions moving at nearly the speed of
light in order to reach the extreme temperature and den-
sity conditions seen in the very early universe. Continued
study of the complex, high multiplicity nucleus-nucleus
collisions occurring at the LHC and RHIC will provide
further insights into the behavior of quantum chromody-
namics and nuclear matter at high energies and into the
state of matter in the first microseconds of the universe.
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TABLE I. Calculated eccentricities and overlap areas for a range of centrality classes (based on cuts in multiplicity) for Au+Au
at
√
sNN = 200 GeV. Except for the refMult ranges used to determine the centrality classes, all other reported values (bavg

through Spart) in the table are averages.

Centrality 0-5% 5-10% 10-15% 15-20% 20-30% 30-40% 40-50% 50-60% 60-70%
refMult ≥566 447-566 353-447 278-353 168-278 97-168 52-97 26-52 13-26
bavg (fm) 2.264 4.015 5.211 6.215 7.378 8.724 9.873 10.89 11.79
Npart 351.3 299.9 253.8 213.8 165.9 114.6 76.34 48.22 29.02
εRP 0.03181 0.09117 0.145 0.1915 0.2469 0.3094 0.3559 0.3816 0.3885
εpart 0.08542 0.1311 0.1803 0.2269 0.2858 0.3598 0.4246 0.4873 0.557

SRP (fm2) 25.99 23.38 20.85 18.62 15.87 12.79 10.29 8.216 6.426
Spart (fm2) 25.94 23.3 20.76 18.5 15.72 12.58 10.02 7.842 5.919

TABLE II. Average eccentricities, overlap areas, and number of participants for various centrality classes for Au+Au at√
sNN = 200 GeV, from T. Hirano and Y. Nara [11].

Centrality 0-5% 5-10% 10-15% 15-20% 20-30% 30-40% 40-50% 50-60% 60-70%
bmin (fm) 0.0 3.3 4.7 5.8 6.7 8.2 9.4 10.6 11.6
bmax (fm) 3.3 4.7 5.8 6.7 8.2 9.4 10.6 11.6 12.5
Npart 352 295 245 204 154 104 65.1 36.8 18.8
εRP 0.0446 0.120 0.183 0.233 0.292 0.348 0.389 0.405 0.398
εpart 0.0818 0.145 0.204 0.254 0.318 0.380 0.433 0.473 0.497

SRP (fm2) 23.4 20.5 18.0 16.0 13.5 10.9 8.69 6.78 5.07
Spart (fm2) 23.4 20.5 18.0 16.0 13.5 10.9 8.65 6.73 5.05

TABLE III. Calculated eccentricities and overlap area for a range of centrality classes (based on cuts in ΣET) for Pb+Pb at√
sNN = 2.76 TeV. Except for ΣET ranges used to designate the centrality classes, all other reported values are averages.

Centrality 0-5% 5-10% 10-15% 15-20% 20-25% 25-30%
ΣET (TeV) ≥ 3.25 2.55-3.25 2.025-2.55 1.6-2.025 1.25-1.6 0.95-1.25
bavg (fm) 2.322 4.142 5.403 6.39 7.25 8.041
Npart 377.2 333.6 286.1 245.1 208.8 175.7
εRP 0.01698 0.06296 0.1126 0.1558 0.1924 0.2278
εpart 0.07506 0.1103 0.1535 0.1951 0.2335 0.2721

SRP (fm2) 29.12 26.71 24.1 21.76 19.67 17.71
Spart (fm2) 29.07 26.63 24.0 21.64 19.52 17.54
Centrality 30-35% 35-40% 40-50% 50-60% 60-70% 70+%

ΣET (TeV) 0.75-0.95 0.55-0.75 0.3-0.55 0.15-0.3 0.1-0.15 <0.1
bavg (fm) 8.718 9.355 10.24 11.3 12.06 14.12
Npart 148.4 124.1 92.72 60.53 41.38 12.6
εRP 0.2558 0.2821 0.3154 0.3433 0.3542 0.1753
εpart 0.3047 0.3379 0.3857 0.4433 0.4916 0.6853

SRP (fm2) 16.06 14.51 12.41 10.02 8.345 3.669
Spart (fm2) 15.85 14.28 12.12 9.636 7.869 3.376

TABLE IV. Average εpart, Spart, and Npart for various centrality classes for Pb+Pb at
√
sNN = 2.76 TeV [12].

Centrality 0-5% 5-10% 10-15% 15-20% 20-25% 25-30%
Npart 381±2 329±3 283±3 240±3 204±3 171±3
εpart 0.074±0.003 0.111±0.005 0.154±0.007 0.198±0.009 0.238±0.009 0.276±0.010

Spart (fm2) 29.4±1.2 26.6±1.1 24.0±1.0 21.6±1.0 19.5±0.9 17.5±0.8
Centrality 30-35% 35-40% 40-50% 50-60% 60-70% 70-80%
Npart 143±3 118±3 86.2±2.8 53.5±2.5 30.5±1.8 15.7±1.1
εpart 0.312±0.011 0.346±0.010 0.395±0.010 0.465±0.008 0.543±0.011 0.630±0.016

Spart (fm2) 15.7±0.8 14.1±0.7 12.0±0.6 9.4±0.5 7.1±0.4 4.8±0.3


